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HESconsumer

The Home Energy Saver Suite

 LBNL creates in early 1990s

* First web-based residential
energy analysis tool

* Operational assessment
(energy, cost, carbon)

* Hourly simulation using
DOE-2.1E & other methods

e 7 million site visits so far

* APl now used by 3"9-party
developers
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Accuracy Misreadings

* Energy Trust of
Oregon & CSG
(2008) concluded 3°° e

that: =0 "

— the tool in pinkis 0
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— more inputs do /
not make the 0 100 200 oo
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Accuracy is Rarely Well-defined

Accuracy of What? Accuracy vs Precisi
* Modeling

. Measure of Measure
* Programming (bugs) bias |\ of spread
e Audit data @
e Default values
) User |n puts Accurate but not Precise Precise but not Accurate

e Measured data & weather

How is Accuracy Defined? @ 1o

«  Metrics y
* Acceptable tolerance
* Whole-house vs. Fuel vs. End Use level
* Operational vs. Asset

Not Accurate or Precise Both Accurate & Precise

Why is Accuracy Assessment being Done?
* Much depends on purpose of the analysis and how results are to be used

e Accuracy assessments are most valuable when used during model
development vs after the fact



Asset vs. Operational Assessment

e Asset assessment
(low information
“drive-by” audit)

* Operational: classic
on site energy audit e

* This study focuses
on Operational
analyses

— see Bourassa et al.
for accuracy results
of the Asset-based
derivative of HES =>
HEScore




Model Accuracy Across Climates

* QOperational

a na |ySiS: 428 Geographic variation of HES Accuracy
homes (QA'd down « v
from 660)* o o

— FSEC & NREL Data

 Model results
compared to actual
energy data

e Three climates

— Florida (Hot
Humid) — 2 cohorts

— Wisconsin (Cold)

— Oregon (Cool/
Cloudy)

* See https://sites.google.com/a/lbl.gov/hes-public/accuracy/decision-rules



“Defaults” = fully defaulted,
except for weather
* inputs: 1 required
0 optional]
“Asset::Visual” = non-
intrusive, non-instrumented

* Inputs: 18 required
9 optional

“Asset::Full” = Instrumented
audit; more equipment &
envelope characteristic data

* |nputs: 26 required
16 optional

“Operational” = Asset::Full +
behavioral inputs
(interview)

* Inputs: 28 required; 29
optional * See https://sites.google.com/a/lbl.gov/hes-public/accuracy/decision-rules




Caveats

III

Even the “Operationa
scenario was limited in
rigor (lighting and misc.
appliances poorly

characterized in audits)

Mapping good field-
audit data to model
inputs is challenging
(e.g., duct locations and
conditioned basements)

Not all behavioral
factors could be directly
accommodated in the
model (e.g., vacancy;
zoned heating/cooling;
use of MELs)
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Cohort Characteristics and HES Summary
Results for the Four Cohorts of Homes

FL: FL: Florida Oregon
Homestead | Power Corp

Sample size 10 homes 171 homes 139 homes 108 homes
Defaults -15% -19% 4% 66%
Asset:: Visual -17% -7% 68% 56%
Asset::Full -25% -5% 7% 19%
Operational 0.5% 1.3% na -0.4%

Precision of the results (CV) was also best in each of the Operational cases



Homestead Cohort:
Virtually identical Homes & Efficiencies...

... but 3x Variation in Energy Use
* Even greater differences at end-use level

* End-use data extremely valuable for forensic
accuracy assessment

LEGEND: End Use (High/Low variation)
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We Benefitted from High-fidelity Interval
Data for the Homestead Houses

Interior Temps: Jan. 24- 25th, 1995 Heating Energy Use: Jan. 24th-25th 1995

Selected Channels

HO1, HO2 Experiment Database HO1, HO2 Experiment Database

HO9 DBACLUSE
v HOL DBACLUSE
HO2 DBACLUSE

HO7 DBACLUSE
HO8 DBACLUSE
H10 DBACLUSE

Selected Channels

o 3 ;Z 1995 00'(;(‘))'00t 3 3205 1995 23.?)%.00 s [a] 1000 2000 3000 4000 5000 6000 7(}00I 80I00 : Q000
an sBLEGELE0 JA0 e Sep 01 1994 00:15:00 to Sep 01 1995 00:00:00

More at https://sites.google.com/a/Ibl.gov/hes-public/accuracy/submetered-data



HES Accuracy by (a) Fuel & (b) #Inputs

* “Accuracy” can arise from offsetting errors

120%
(b) & Electricity

80% -

& Fuel

40% - J i
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-40%
FL: FL: FPC OR WI FL: FL: FPC OR WI FL: FL: FPC OR WI FL: FL: FPC OR WI
Hmstd Hmstd Hmstd Hmstd

Florida homes are all-electric

* More inputs can improve accuracy

% of homes  Defaults Asset::Visual Asset::Full Operational
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Measured vs. HES-predicted Annual

Energy Use: Homestead Cohort

* Asset analysis good on average; but often
lousy for specific home

e Operational analysis accurate within 1% (avg)

Predicted Default and Asset Inputs Predicted Operational Inputs
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Results by End Use: Central Florida
Large Sample

kWh/year
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Measured vs. HES-predicted Annual
Energy Use: Oregon Cohort

* Asset runs high, improve with increased inputs

e Operational runs accurate to within 1% (avg)

Predicted Default and Asset Inputs
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Measured vs. HES-predicted Defaults and
Asset Annual Energy Use: Wisconsin

Predicted Default and Asset Inputs

(Site MBTU) . .
* Asset runs 125% H10%
# Asset::Visual (N=136) /,/ ,/' &
good W|th Fu” 400 - D Asset::Ful (N=’135) /,;oé@e@ | -10%
) ] A Defaults (N=139) /,.'&6‘ )
inputs (w/in KR | 25w
| v 4 /
7% on avg) 200 w8l
i ‘0‘ sl[f‘ L
e Data did not SN A o
200 1+ *%, o
2.
support full Yn
operational 100 - 54
analysis
0 : | | | |
0 100 200 300 400

Measured (Site MBTU)



Value of Accuracy Assessment During
Tool Development

 Powerful: Compare measured data to
model predictions vs. house and
equipment characteristics

 |dentified bug in air handler/AC
algorithm: results went from 75%
under-prediction to 1% over-
prediction in Florida home sample

* |dentified need for updates to duct
model, and inappropriate treatment
of regain

* |dentified and repaired inappropriate
free heat from certain appliances (e.g.
clothes dryer venting)

* Improvements/updates to defaults,
reflecting current housing stock




Defaults Assumptions are Important

e Sensitivity of HES-predicted whole-house
Energy Use to old vs new default assumptions

Curtains closed: 24x7 => night/winter; day/summer j—

Water heater set point: 130 => 120F ﬂ
Water heater EF: O, E, G- 0.53, 0.86, 0.54 => 0.51, 0.90, 0.59 p—
Refrigerator vintage: 1996-8 => 2001 {
Foundation type: slab => ventilated crawlspace
Glazing: RECS 2005 => RECS 2009, by region el
Weather station modifiers for site conditions: rural =>urban
Dishwasher: 4 =>3 loads/week ﬁ
Clothes Dryer: 7 => 5 loads/week —— Jackson (MS)
Clothes Washer: 7 => 6 loads/week, lower temperature —_—— San Diego (CA)
Thermostat: 78/81 Cool, 68/64 Heat => 78/84; 68/60 — & Miami (FL)
Neighboring house height: none => same as default house " St Louis (MO)
Wall cavity insulation: RO => R3 — " Chicago (1) -
-15% -10% -5% 0% 5% 10% 15%

Change in whole-house energy use



Future Simulation Enhancements

Influence of partition walls:
interior walls in poorly
insulated homes provides
significant increases in overall
thermal resistance

Zoning: GRI evaluation in 1980
revealed 30% reduction in
heating from zoned vs. central

Degree of basement
conditioning

Updates to duct model with
treatment of regain

Window heat transfer from
curtains/insect screening
(empirical & laboratory data)
Critical inputs emphasis in
revised user interface




HES Pro: Operational factors brings accuracy to < 1% of
actual bills, on average

— Minimizes variance relative to asset analyses

— Accuracy found to be excellent, even at the end-use level

— Repeatability results in large samples in varied climates

Operational factors have as great an effect on accuracy as
do physical characteristics

— How occupant operates the house matters at least as much as the
house construction and equipment. Major conclusion!

Deficiencies or gaps in audit data erode perceived accuracy
— Lighting and miscellaneous energy use are important
Accuracy assessments (prediction vs. data) aid model
development
— Errors often offset one-another; can give false illusion of accuracy
— End-use data particularly useful to address such issues
Building simulation community now capturing important
nuances (e.g., basement thermal performance)

Improved modeling of lighting/miscellaneous energy and
zoning are important to further improvements in accuracy

HES Accuracy: Take-aways

Precision

Accuracy

Resolution Repeatability,

NOT Accurate Accurato
NOT Ropeatabie NOY Repoatable

- \ g
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